The [2,3] sigmatropic rearrangement of N-benzyl- O allylhydroxylamines

Stephen G. Davies,* John F. Fox, Simon Jones, Anne J. Price, Miguel A. Sanz, Thomas G. R. Sellers, Andrew D. Smith and Fátima C. Teixeira

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford, UK OXI 3QY

Received (in Cambridge, UK) 31st May 2002, Accepted 19th June 2002
First published as an Advance Article on the web 12th July 2002

The rearrangement of a range of N -benzyl- O -allylhydroxylamines to the corresponding N -allylhydroxylamines upon treatment with n-BuLi in THF, followed by reduction to the corresponding N-allylamines, is described. Mechanistic studies of the transformation are consistent with an intramolecular $[2,3]$ sigmatropic rearrangement.

Introduction

Sigmatropic rearrangement processes have been used extensively within organic synthesis for a variety of synthetic applications. Of the many rearrangement processes that exist, ${ }^{1}$ [2,3] sigmatropic rearrangements have received considerable attention as a method for carbon-carbon and carbonheteroatom bond formation. ${ }^{2}$ A variety of substrates have been shown to undergo this transformation, ${ }^{3}$ including the Sommelet-Hauser rearrangement of quaternary ammonium salts, ${ }^{4}$ the Meisenheimer rearrangement of tertiary amine oxides, ${ }^{5}$ the Mislow rearrangement of allylic sulfoxides ${ }^{6}$ and the related Wittig and aza-Wittig rearrangements of allylic ethers ${ }^{7}$ and amines ${ }^{8}$ (Fig. 1).

Fig. 1 [2,3] Sigmatropic rearrangements.
As a result of the synthetic utility of these transformations, ${ }^{9}$ there is an ongoing demand for novel rearrangement processes that facilitate the preparation of highly functionalised intermediates. During our investigations concerning the preparation of homochiral hydroxylamine chromium tricarbonyl complexes, ${ }^{10}$ and the continuation of our lithium amide studies ${ }^{11}$ we noticed an unusual rearrangement of N-benzyl- O-allylhydroxylamines such as 1 to the corresponding N-benzyl- N-allylhydroxylamines 2 . This process was assumed to arise from an intramolecular $[2,3]$ sigmatropic rearrangement, formally analogous to the [2,3] Wittig rearrangement. Related processes have been reported in the literature, notably involving the rearrangement of allyl oxime ethers to nitrones under both thermal ${ }^{12,13}$ and palladium(II) catalyzed conditions, ${ }^{14}$ while the
reverse rearrangement of N -aryl- N -allylhydroxylamines 3 to O-allylhydroxylamines 4 has also been recently communicated (Fig. 2). ${ }^{15}$

Fig. $2 \quad[2,3]$ Sigmatropic N, O rearrangements.
The recent rediscovery ${ }^{16,17}$ of this novel $N, O[2,3]$ sigmatropic rearrangement protocol, which we first reported four years ago, ${ }^{18}$ has prompted us to report herein our full mechanistic investigations concerning the $[2,3]$ sigmatropic rearrangement of N -benzyl- O -allylhydroxylamines to N -benzyl- N -allylhydroxylamines.

Results and discussion

Preparation of N -benzyl- O -allylhydroxylamine substrates

To investigate fully the substrate limitations of this rearrangement, an efficient route for the preparation of a range of substituted N, O-disubstituted hydroxylamines was required. The most widely used approach for the synthesis of such substrates involves the reduction of O-substituted oximes, which in turn may be readily prepared by O-alkylation of oximes. ${ }^{19}$ In this manner, treatment of benzaldehyde oxime with $\mathrm{KO}^{\prime} \mathrm{Bu}$ in THF and subsequent alkylation with either allyl, crotyl \dagger, 3-methylbut-2-enyl, (E)-cinnamyl, 1-methylallyl or 1-methylbut-2-enyl halides respectively gave the O-allyl oximes 5-10 in good to excellent yields after purification by distillation or chromatography. ${ }^{20}$ Although O-cinnamyl oxime $\mathbf{8}$ was isolated as a single geometric isomer using this alkylation protocol, the crotyl and 1-methyl-but-2-enyl bromides were

[^0]supplied as $76: 24$ or $83: 17$ mixtures of (E) and (Z) isomers respectively, and so $\mathbf{6}$ and $\mathbf{1 0}$ were isolated as a corresponding mixture of isomers. Similar treatment of acetophenone oxime with allyl bromide gave O-allyl oxime 11 in high yield. While a number of reducing agents have previously been employed for the reduction of oximes, ${ }^{\mathbf{2 1 , 2 2}}$ in our hands O-allyl oximes 5-11 were readily reduced with pyridine-borane, to give the desired N-benzyl- O-allylhydroxylamines $\mathbf{1 2 - 1 8}$ in excellent overall yields (Scheme 1).

			5-11				
					(ii)		
					$12-\mathbf{1}$		
	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	R^{4}	Yield		Yield
5	H	H	H	H	91\%	12	94\%
6	H	H	H/Me	76:24	86\%	13	85\%
7	H	H	Me	Me	89\%	14	80\%
8	H	H	H	Ph	83\%	15	84\%
9	H	Me	H	H	68\%	16	69\%
10	H	Me	H/Me E/Z 83:17		43\%	17	82\%
11	Me	H	H	H	93\%	18	83\%

Scheme 1 Reagents and conditions: (i) $\mathrm{KO}^{t} \mathrm{Bu}$, THF then alkyl halide; (ii) pyridine-borane (3 eq .), $0^{\circ} \mathrm{C}$ to rt.

[2,3] Sigmatropic rearrangements-initial investigations

With a range of N -benzyl- O-allylhydroxylamines $\mathbf{1 2 - 1 8}$ in hand, the optimal reaction conditions required for the rearrangement were investigated, with (E) - N-benzyl- O -(3phenylallyl)hydroxylamine $\mathbf{1 5}$ initially used for model studies. Preliminary results used $n-\mathrm{BuLi}$ (1.1 eq.) at $-78^{\circ} \mathrm{C}$ to initiate the rearrangement, and toluene as the reaction solvent. Upon warming to rt , the total consumption of starting material was noted after 10 minutes. ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixture showed a $1: 1: 1$ mixture of three components, identified as the required rearrangement products N-benzyl- N-(1-phenylallyl)hydroxylamine 19, cinnamyl alcohol 20 and N-benzyl- N-butylamine 21. ${ }^{23} \mathrm{~N}$-Benzyl- N-butylamine 21 presumably arises from the direct displacement of the alkoxide group from the intermediate lithium amide with $n-\mathrm{BuLi}$, an electrophilic amination protocol which has been extensively studied by Beak et al. ${ }^{24}$ Indeed, treatment of hydroxylamine 15 with an excess (2 eq . and 10 eq.) of $n-\mathrm{BuLi}$ in toluene gave cinnamyl alcohol 20 and N-benzyl- N-butylamine 21 as the predominant products (71% and 83% respectively) over the rearrangement product $19(29 \%$ and 17% respectively). However, exclusive formation of the rearrangement product 19 was noted if the rearrangement process was carried out with $n-\mathrm{BuLi}$ (1.1 eq.) in either THF or $\mathrm{Et}_{2} \mathrm{O}$ (Scheme 2).

Similar treatment of N -benzyl- O -allylhydroxylamine 12 with 1.1 eq. n - BuLi showed predominant rearrangement to N-benzyl- N-allylhydroxylamine 22 in either toluene, THF or $\mathrm{Et}_{2} \mathrm{O}$, although N-benzyl- N-butylamine 21 was the major product observed upon addition of excess (5 eq. and 10 eq.) of $n-\mathrm{BuLi}$ in toluene (Scheme 3).

Further investigations concentrated upon identification of the optimal base required for activation of the rearrangement of (E) - N-benzyl- O-(3-phenylallyl)hydroxylamine $\mathbf{1 5}$ to

> 15
> (i)
> 19
> 21

Scheme 2 Reagents and conditions: (i) $n-\operatorname{BuLi}$ (1.1 eq.), solvent, -78 ${ }^{\circ} \mathrm{C}$ to rt, 10 minutes; (ii) $n-\operatorname{BuLi}$ (2 eq.), solvent, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10$ minutes; (iii) $n-\mathrm{BuLi}$ (10 eq.), solvent, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10$ minutes.

Conditions	Solvent	$22(\%)$	$21(\%)$
(i)	toluene	97	3
(ii)	toluene	11	89
(iii)	toluene	8	92
(i)	THF	100	0
(i)	Et ${ }_{2} O$	100	0

Scheme 3 Reagents and conditions: (i) $n-\mathrm{BuLi}$ (1.1 eq.), solvent, -78 ${ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10$ minutes; (ii) $n-\mathrm{BuLi}$ (5 eq .), solvent, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10$ minutes; (iii) n - BuLi (10 eq.), solvent, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 10$ minutes.
N-benzyl- N-(1-phenylallyl)hydroxylamine 19, with MeMgBr or ${ }^{t} \mathrm{BuOK}$ leading to significant substrate decomposition, and no isolable or identifiable products. $n-\mathrm{BuLi}$ was found to be essential to effect total and exclusive conversion to the rearrangement product 19 , while the use of LiHMDS or NaHMDS gave predominantly the rearrangement product 19, but also significant quantities of cinnamyl alcohol 20 (Scheme 4).

Subsequent optimisation studies therefore used $n-\mathrm{BuLi}$ as the base and THF as the reaction solvent, and concentrated upon elucidating the effect of temperature on the rearrangement, using N -benzyl- O -allylhydroxylamine 12. Thus, treatment of hydroxylamine $\mathbf{1 2}$ in THF with n - BuLi at either $-78^{\circ} \mathrm{C},-61$ ${ }^{\circ} \mathrm{C},-43^{\circ} \mathrm{C},-20^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ for one hour prior to work-up indicated that the reaction had proceeded to $0 \%, 20 \%, 78 \%$, $>95 \%$ and $>95 \%$ conversion respectively to N-benzyl- N allylhydroxylamine 22. Monitoring the extent of conversion of N -benzyl- O -allylhydroxylamine $\mathbf{1 2}$ to N -benzyl- N -allylhydroxylamine 22 with time at $-43^{\circ} \mathrm{C}$ showed that the reaction obeyed first order kinetics, with a rate constant $k=0.024$ min^{-1} corresponding to a half life of the rearrangement of approximately 30 minutes. Further optimisation led to a more

19

Base	$\mathbf{1 9}(\%)$	$\mathbf{2 0}(\%)$
$n-\mathrm{BuLi}$	100	0
LiHMDS	66	34
NaHMDS	88	12

Scheme 4 Reagents and conditions: (i) base, THF, $-78{ }^{\circ} \mathrm{C}$ to rt, 10 minutes.
convenient general reaction protocol, whereby deprotonation of amine $\mathbf{1 2}$ with n-BuLi at $-78{ }^{\circ} \mathrm{C}$ for one hour, prior to warming to rt for 30 minutes, then addition of water gave the rearranged product in essentially quantitative conversion as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{25}$ Use of this optimised experimental procedure with hydroxylamine substrates 12-18 gave the rearranged products 19, 22-27 as the sole reaction products in excellent conversion ($>95 \%$). The only problematic reaction of those studied was the attempted rearrangement of N -benzyl- O -(3-methylbut-2enyl)hydroxylamine $\mathbf{1 4}$ involving rearrangement to a tertiary centre, which proceeded to give only 10% of the desired product 24, even after deprotonation and stirring at rt for 48 h . However, by heating the reaction to reflux for 2 h after the initial addition of $n-\mathrm{BuLi}$ at $-78{ }^{\circ} \mathrm{C}$, the reaction could be driven to complete conversion to the desired hydroxylamine 24. Attempted Kugelröhr distillation of the product N-benzyl- N allylhydroxylamines resulted in extensive product decomposition, while purification by chromatography on silica typically gave $<30 \%$ mass recovery. While unsatisfactory, the use of silica doped with $1 \% \mathrm{NEt}_{3}$ consistently furnished the best mass return (40% to 61% yield) of the purified hydroxylamines, although still in a noticeably lower isolated yield than that expected from the quantitative conversion observed from the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material (Scheme 5).

Information regarding the transition state of this reaction was obtained from the rearrangement of N -benzyl -O -(1 -methylallyl)hydroxylamine 16, which results in the exclusive formation
of (E)- N -benzyl- N -but-2-enylhydroxylamine $\mathbf{2 5}{ }^{26}{ }^{26}$ This is consistent with the reaction occurring via an envelope transition state, with the $\mathrm{C}(1)$ methyl group preferentially occupying a pseudo-equatorial position, consistent with that proposed for the related [2,3] Wittig rearrangement (Fig. 3).

16

25
Fig. 3

Reduction of hydroxylamine products

Although the rearrangement of hydroxylamines 12-18 had proceeded to excellent levels of conversion, the moderate isolated yields of compounds 19, 22-27 were inadequate for practical preparative use. However, reduction of the $N-O$ bond of hydroxylamines 19, 22-27 could be easily performed using Zn and HCl to afford the corresponding allylic amines, which proved more amenable to purification. In this manner the desired allylic amines $\mathbf{2 8 - 3 4}$ were obtained in good to excellent yields and high purity (Scheme 6).
The success of this reduction protocol suggested that it would be convenient to perform the hydroxylamine reduction on the crude rearranged products. Thus, rearrangement of hydroxylamines 12, 13 and 15 and direct reduction of the crude reaction mixture gave allylic amines 28, 29 and 31 in excellent yields ($91 \%, 93 \%$ and 92% respectively) over two steps (Scheme 7).
This 'one-pot' protocol involving rearrangement and direct reduction therefore provides a versatile route to α functionalised allylic amines that have previously proved to be useful synthons in organic synthesis. ${ }^{27}$

Further mechanistic investigations

Further mechanistic investigations were performed to confirm that the reaction was indeed a $[2,3]$ rearrangement process, since the related rearrangement of N, O-disubstituted hydroxylamine
*As indicated by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.
\# Isolated yields of hydroxylamines 19, 22-27 after chromatography on silica doped with $1 \% \mathrm{NEt}_{3}$
Scheme 5 Reagents and conditions: (i) n-BuLi, THF, $-78^{\circ} \mathrm{C}$ then rt; (ii) n-BuLi, THF, $-78^{\circ} \mathrm{C}$ then Δ.

Scheme 6 Reagents and conditions: (i) $\mathrm{Zn}, \mathrm{HCl}, 80^{\circ} \mathrm{C}$.

12, 13, 15
28, 29, 31

	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$		Yield
$\mathbf{1 2}$	H	H	H	$\mathbf{2 8}$	91%
$\mathbf{1 3}$	H	H / Me	$\mathbf{2 9}$	93%	
$\mathbf{1 5}$	H	H / Ph		$\mathbf{3 1}$	92%

Scheme 7 Reagents and conditions: (i) n-BuLi, THF, $-78^{\circ} \mathrm{C}$ then rt ; (ii) $\mathrm{Zn}, \mathrm{HCl}$.

35 to N, N-disubstituted hydroxylamine 37 has been shown to proceed via a [1,2] anionic process (Fig. 4). ${ }^{28}$

Fig. 4
However, for the rearrangement of hydroxylamines 12-18 this [1,2] type process was discounted, as the reaction of crotyl hydroxylamine 13 gave exclusively the [2,3] rearrangement product 23. No trace of N-benzyl- N-crotylhydroxylamine 25, the expected product arising from a [1,2] process, was observed in this reaction (Fig. 5).

Fig. 5
The possibility of the mechanism proceeding either via an intermolecular rearrangement or dissociation of a radical pair was similarly ruled out by performing a crossover experiment with substrates 13 and 18. Thus, an equimolar mixture of $\mathbf{1 3}$ and $\mathbf{1 8}$ was treated with 2 eq. of n - BuLi under the standard rearrangement conditions and the reaction mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. If an intermolecular process was occurring, rather than an intramolecular reaction, the scrambled products of rearrangement 22 and 38 would be observed alongside 23 and 27. After
isolation of the crude reaction mixture, only components 23 and 27 were observed, consistent with the respective intramolecular rearrangement processes, providing further convincing evidence that the mechanism of the reaction was an intramolecular [2,3] sigmatropic process (Scheme 8).

Scheme 8 Reagents and conditions: (i) n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ then rt.

Conclusion

In conclusion, a range of N -benzyl- O -allylhydroxylamines can be converted to the corresponding N-allylamines by a protocol consisting of an intramolecular [2,3] sigmatropic rearrangement and subsequent reduction with Zn and HCl . Further studies investigating diastereo- and enantioselective [2,3] sigmatropic $N-O$ rearrangements are currently underway in our laboratory.

Experimental

General

All reactions described as being carried out under nitrogen were performed using standard vacuum line techniques, using glassware that was flame-dried. Reactions described as being performed at $-78^{\circ} \mathrm{C}$ were cooled by means of an acetone-dry ice bath, those at $-61^{\circ} \mathrm{C}$ by a chloroform slush bath, those at $-43{ }^{\circ} \mathrm{C}$ by an acetonitrile slush bath, those at $-20^{\circ} \mathrm{C}$ by an ethylene glycol slush bath, and those at $0^{\circ} \mathrm{C}$ by an ice bath. THF was distilled from sodium benzophenone ketyl under nitrogen prior to use. n-Butyllithium was used as a solution in hexanes and was titrated against diphenylacetic acid prior to use. All other reagents were used as supplied, without further purification. Column chromatography was performed on silica gel (Kieselgel 60), and neutral deactivated silica gel (Kieselgel 60, deactivated with $1 \% \mathrm{NEt}_{3}$). Thin layer chromatography was performed on Merck plates, either aluminium sheets coated with 0.2 mm silica gel $60 \mathrm{~F}_{254}$, or glass plates coated with 0.25 mm silica gel $60 \mathrm{~F}_{254}$. Plates were visualised either by UV light (254 nm), phosphomolybdic acid (10% in ethanol) or potassium permanganate (1% solution in 2% aqueous acetic acid, containing 7% potassium carbonate). Infra-red spectra were recorded using a Perkin-Elmer Paragon 1000 FT spectrometer. Selected peaks are reported. NMR spectra were recorded on Varian Gemini $200\left({ }^{1} \mathrm{H} 200 \mathrm{MHz},{ }^{13} \mathrm{C} 50 \mathrm{MHz}\right)$, Bruker AC $200\left({ }^{1} \mathrm{H} 200 \mathrm{MHz},{ }^{13} \mathrm{C} 50 \mathrm{MHz}\right)$, Bruker DPX 400 $\left({ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{13} \mathrm{C} 100 \mathrm{MHz}\right)$, Bruker AM $500\left({ }^{1} \mathrm{H} 500 \mathrm{MHz}\right.$, $\left.{ }^{13} \mathrm{C} 125 \mathrm{MHz}\right)$, or Bruker AMX $500\left({ }^{1} \mathrm{H} 500 \mathrm{MHz},{ }^{13} \mathrm{C} 125\right.$ $\mathrm{MHz})$ spectrometers. Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are reported in parts per million and are referenced to the residual solvent peak. Coupling constants (J) are recorded in Hz. Low resolution mass spectra were recorded using a VG MASSLAB 20-250 instrument, with the major peaks listed with intensities quoted as percentages of the base peak. Accurate mass measurements were recorded on a VG Autospec instrument,
and were conducted by Mr R. Procter of the Dyson Perrins Laboratory. Retention times were recorded on a Pye 104 analytical GC, using nitrogen carrier gas ($40 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$). Peaks were detected by flame ionisation and are reported in minutes. Elemental analyses were obtained by Mr R. Prior of the Dyson Perrins analytical department on a Carla Erba 1106 combustion elemental analyser. Although compounds 8, 9, 11, 12, 18, 19, 22, 29 and 33 have been noted previously in the literature, varying degrees of experimental data have been reported; full characterisation of these materials is described herein.

General procedure for the preparation of \boldsymbol{O}-allyl oximes

Potassium tert-butoxide (1 eq.) was added to a 0.1 M solution of oxime (1.1 eq .) in THF at $0^{\circ} \mathrm{C}$ and stirred for 20 min under nitrogen. A solution of the allyl bromide (1.5 eq., 0.1 M in THF) was added via cannula to the resulting white suspension with stirring over 5 min , before warming to room temperature and stirring for a further hour. The resulting mixture was partitioned between distilled water and diethyl ether, the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting yellow oil was purified by short path distillation at reduced pressure, or column chromatography.

Benzaldehyde \boldsymbol{O}-allyloxime 5

From benzaldehyde oxime ($5.00 \mathrm{~g}, 45.4 \mathrm{mmol}$) and allyl bromide ($7.50 \mathrm{~g}, 62.0 \mathrm{mmol}$), the oxime $\mathbf{5}$ was obtained $(6.03 \mathrm{~g}$, 91%) as a colourless oil after short path distillation (bp $90^{\circ} \mathrm{C}, 4$ mmHg ; lit., ${ }^{13} \mathrm{bp} 90^{\circ} \mathrm{C}, 8 \mathrm{mmHg}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2921 (s), 1956 (w), $1880(\mathrm{~m}), 1648(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.69(2 \mathrm{H}$, app dt, $\left.J 5.8,1.4, \mathrm{OCH}_{2}\right), 5.27(1 \mathrm{H}$, ddt, $J 10.4,1.7,1.1, \mathrm{CH}=\mathrm{CHH})$, $5.37(1 \mathrm{H}$, app dq, $J 17.3,1.6, \mathrm{CH}=\mathrm{CH} H), 6.07(1 \mathrm{H}, \mathrm{ddt}, J$ 17.3, 10.4, $5.8, \mathrm{CH}=\mathrm{CH}_{2}$), $7.34-7.44(3 \mathrm{H}, \mathrm{m}$, aromatic CH$)$, $7.55-7.63(2 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H), 8.13(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}$ $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 75.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 118.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.1,128.8$, 129.9 (aromatic CH), 132.3 (ipso- C), $134.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 148.9$ $(C H=N) ; m / z(\mathrm{APCI})\left(\mathrm{MH}^{+}, 25 \%\right), 131(65 \%), 106(100 \%)$; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}^{+}: 162.0919$. Found: 162.0922.

Benzaldehyde \boldsymbol{O}-(but-2-enyl)oxime 6

From benzaldehyde oxime ($2.00 \mathrm{~g}, 16.5 \mathrm{mmol}$) and crotyl bromide ($3.35 \mathrm{~g}, 24.8 \mathrm{mmol}$), the oxime $6(2.28 \mathrm{~g}, 86 \%)$ was obtained as a colourless oil ($E: Z 76: 24$) after short path distillation (bp $94{ }^{\circ} \mathrm{C}, 4 \mathrm{mmHg}$; lit., ${ }^{13} \mathrm{bp} 52^{\circ} \mathrm{C}, 0.5 \mathrm{mmHg}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2917 (s), 1882 (w), $1674(\mathrm{~m}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.76\left(3 \mathrm{H}, \mathrm{dd}, J 6.4,1.2, \mathrm{CH}_{3}\right), 4.63(2 \mathrm{H}, \mathrm{d}, J 6.5,(E)-$ $\left.\mathrm{OCH}_{2}\right), 4.77\left(2 \mathrm{H}, \mathrm{d}, J 6.6,(\mathrm{Z})-\mathrm{OCH}_{2}\right), 5.71-5.77(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ $\left.\mathrm{CHCH}_{3}\right), 5.82-5.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{3}\right), 7.36-7.41(3 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.58-7.61(2 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.11(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.1\left((Z)-\mathrm{CH}_{3}\right), 17.8\left((E)-\mathrm{CH}_{3}\right)$, $69.6\left((Z)-C \mathrm{H}_{2}\right), 75.1\left((E)-\mathrm{CH}_{2}\right), 125.8,126.8,127.1,127.2$, 128.6, 128.8, 129.2, 129.9. $131.0((E)$ - and (Z)-aromatic $C H$ and $C H=C H), 132.5($ ipso-C), $148.8(C H=N) ; m / z(A P C I) 176$ $\left(\mathrm{MH}^{+}, 15 \%\right), 122(100 \%)$; HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}^{+}$: 176.1075. Found: 176.1074.

Benzaldehyde \boldsymbol{O}-(3-methylbut-2-enyl)oxime 7

From benzaldehyde oxime ($2.00 \mathrm{~g}, 18.2 \mathrm{mmol}$) and 3-methylbut-2-enyl bromide ($3.70 \mathrm{~g}, 24.8 \mathrm{mmol}$), the oxime 7 $(2.78 \mathrm{~g}, 89 \%)$ was obtained as a colourless oil after short path distillation (bp $100-102^{\circ} \mathrm{C}, 1 \mathrm{mmHg}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2931 (s), 1954 (w), 1879 (w), 1812 (w), 1676 (s); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} H_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{3}\right), 4.70\left(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{OCH}_{2}\right)$, $5.50\left(1 \mathrm{H}\right.$, tsept, $\left.J 7.2,1.3, \mathrm{OCH}_{2} \mathrm{CH}\right), 7.36-7.41(3 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H), 7.56-7.60(2 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.10(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.1\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 70.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 120.1\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 127.2, 128.9, 129.9 (aromatic $C \mathrm{H}), 132.7,138.7$ (ipso- C and $\left.\mathrm{CH}=C\left(\mathrm{CH}_{3}\right)_{2}\right), 148.7(\mathrm{CH}=\mathrm{N})$;
m / z (APCI) $190\left(\mathrm{MH}^{+}, 5 \%\right), 122(100 \%)$; HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}^{+}: 190.1232$. Found: 190.1239.

(\boldsymbol{E})-Benzaldehyde \boldsymbol{O}-(3-phenylallyl)oxime $\mathbf{8}^{29}$

From benzaldehyde oxime ($2.00 \mathrm{~g}, 16.5 \mathrm{mmol}$) and cinnamyl bromide ($4.88 \mathrm{~g}, 24.8 \mathrm{mmol}$), the oxime $8(3.25 \mathrm{~g}, 83 \%$) was obtained as a colourless oil after column chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$-hexane, SiO_{2}) which solidified on standing to give a cream coloured solid (mp 42-43 ${ }^{\circ} \mathrm{C}$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3027$ (s), 1952 (w), 1879 (w), 1810 (w); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.02(2 \mathrm{H}$, dd, $\left.J 1.1,6.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.59\left(1 \mathrm{H}, \mathrm{dt}, J 16.0,6.1, \mathrm{CH}_{2} \mathrm{CH}=\right.$ $\mathrm{CH}), 6.85\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.38-7.59(8 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.72-7.78(2 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H), 8.31(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 75.1\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 125.4,126.8$, 127.2, 128.0, 128.7, 128.8, 129.9, 133.5 (aromatic and alkene CH), 132.4, 136.8 (ipso-C), $149.0(\mathrm{CH}=\mathrm{N})$) m / z (APCI) 238 $\left(\mathrm{MH}^{+}, 5 \%\right), 117\left(\mathrm{PhCH}=\mathrm{CHCH}_{2}{ }^{+}, 100 \%\right)$; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$: C 81.0, H 6.4, N 5.9%. Found: C 80.8, H 6.4, N 5.75\%.

Benzaldehyde \boldsymbol{O}-(1-methylallyl)oxime $\mathbf{9}^{\mathbf{3 0}}$

Benzaldehyde oxime ($1.01 \mathrm{~g}, 8.34 \mathrm{mmol}$) and potassium tertbutoxide ($1.02 \mathrm{~g}, 9.09 \mathrm{mmol}$) were dissolved in THF (40 ml). After stirring for $20 \mathrm{~min}, 3$-chlorobut-1-ene ($1.7 \mathrm{ml}, 16.5 \mathrm{mmol}$) was added in a dropwise manner over five minutes. Sodium bromide ($849 \mathrm{mg}, 8.25 \mathrm{mmol}$) and tetrabutylammonium chloride ($115 \mathrm{mg}, 0.41 \mathrm{mmol}$) were then added, and the mixture refluxed for 18 h . After cooling, water (40 ml) was added, and the mixture extracted with diethyl ether ($2 \times 40 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvents removed in vacuo. Short path distillation (bp $68{ }^{\circ} \mathrm{C}, 0.2 \mathrm{mmHg}$) gave the oxime $9(980 \mathrm{mg}$, 68%) as a pale yellow oil. $v_{\max }($ film $) / \mathrm{cm}^{-1} 2983(\mathrm{~s}), 1879(\mathrm{w}) ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.41\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right), 4.80(1 \mathrm{H}$, app quintet $\left.\mathrm{t}, J 6.4,1.1, \mathrm{CH}_{3} \mathrm{CH}\right), 5.19(1 \mathrm{H}$, app dt, $J 10.6,1.3, \mathrm{CH}=$ $\mathrm{CHH}), 5.30(1 \mathrm{H}$, app dt, $J 17.3,1.4, \mathrm{CH}=\mathrm{CHH}), 5.99(1 \mathrm{H}$, ddd, $\left.J 17.3,10.7,6.2, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.35-7.41(3 \mathrm{H}, \mathrm{m}$, aromatic CH$)$, $7.57-7.61(2 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{C}}$ $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 19.8 \quad\left(\mathrm{CH}_{3}\right), \quad 80.1 \quad\left(\mathrm{CH}_{3} \mathrm{CH}\right), \quad 115.8$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.1,128.7,129.7$ (aromatic CH), 132.6 (ipso-C), $139.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 148.5(\mathrm{CH}=\mathrm{N}) ; \mathrm{m} / \mathrm{z}(\mathrm{APCI}) 176\left(\mathrm{MH}^{+}, 10 \%\right)$, $122\left(\mathrm{PhCHNOH}_{2}{ }^{+}, 100 \%\right)$; HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}^{+}$: 176.1075. Found: 176.1072.

Benzaldehyde \boldsymbol{O}-(1-methylbut-2-enyl)oxime 10

Phosphorus tribromide ($0.53 \mathrm{ml}, 5.6 \mathrm{mmol}$) was added in a dropwise manner to a solution of (E)-pent-3-en-2-ol (1.53 ml , $15 \mathrm{mmol})$ in diethyl ether $(50 \mathrm{ml})$, cooled to $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h , and then used in the next step without purification. Benzaldehyde oxime ($2.43 \mathrm{~g}, 20 \mathrm{mmol}$) and potassium tert-butoxide were dissolved in THF $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After 30 min , the solution of bromide was transferred to the mixture by cannula, and the resulting mixture heated to reflux for 18 h . After cooling, water (50 ml) was added, the mixture extracted with diethyl ether $(3 \times 50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo. Column chromatography $\left(10 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40-60$) , SiO_{2}) gave the oxime $10(1.22 \mathrm{~g}$, 43%) as a colourless oil ($E: Z 83: 17$). Data for major (E) isomer; $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2979 (s), 1890 (w), $1676(\mathrm{~m}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right), 1.74(3 \mathrm{H}$, app d, $J 6.7$, $\left.\mathrm{CH}_{3}\right), 4.75(1 \mathrm{H}$, app quintet, $J 6.5, \mathrm{OCH}), 5.58-5.66(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 5.73-5.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 7.32-7.40(3 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.57-7.60(2 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.09(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{N})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{CH}_{3}\right)$, $20.1\left(\mathrm{CH}_{3}\right)$, 79.9 $\left(\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}\right), 127.0,127.7,128.6,129.5,132.3(\mathrm{CH}=\mathrm{CH}$, $\mathrm{CH}=\mathrm{CH}$ and ArCH$), 132.7$ (ipso-C), $148.1(C H=\mathrm{N}) ; m / z$ (APCI) $190\left(\mathrm{MH}^{+}, 15 \%\right), 122\left(\mathrm{PhCHNOH}_{2}{ }^{+}, 100 \%\right), 106$ (10%); HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}^{+}$: 190.1232. Found: 190.1228

Acetophenone \boldsymbol{O}-allyloxime 11^{10}

From acetophenone oxime ($1.00 \mathrm{~g}, 7.40 \mathrm{mmol}$) and allyl bromide ($0.98 \mathrm{~g}, 8.14 \mathrm{mmol}$), the oxime $11(1.21 \mathrm{~g}, 93 \%)$ was obtained as a colourless oil after short path distillation (bp 95 ${ }^{\circ} \mathrm{C}, 4 \mathrm{mmHg} ;$ lit. $,{ }^{31} 89^{\circ} \mathrm{C}, 6 \mathrm{mmHg}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.73\left(2 \mathrm{H}\right.$, app dt, $\left.J 5.7,1.4, \mathrm{OCH}_{2}\right), 5.25(1 \mathrm{H}$, app dq, $J 10.4,1.3, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.36(1 \mathrm{H}$, app dq$, J 17.3,1.6, \mathrm{CH}=$ $\mathrm{CH} H), 6.09\left(1 \mathrm{H}, \mathrm{ddt}, J 17.3,10.4,5.7, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.35-7.41$ $(3 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.53-7.68(2 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.

General procedure for the reduction of the oxime ethers

Method A: pyridine-borane complex (3 eq.) was added to a stirred 0.5 M solution of the allylic oxime (1 eq .) in absolute ethanol at $0^{\circ} \mathrm{C}$, followed by the dropwise addition of a solution of $10 \% \mathrm{HCl}$ in water (4 ml per mmol of oxime) over a period of five minutes. The mixture was warmed to room temperature and stirred for a further 1 h after which time the mixture was cooled to $0^{\circ} \mathrm{C}$, saturated aqueous sodium carbonate solution added until the acid was neutralised, and the mixture extracted with dichloromethane. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and the resulting yellow oil purified by reduced pressure short path distillation to give the desired hydroxylamine.

Method B: pyridine-borane complex (3 eq.) was added to a stirred 0.5 M solution of the allylic oxime (1 eq.) in absolute ethanol at $0^{\circ} \mathrm{C}$, followed by the dropwise addition of a solution of $20 \% \mathrm{HCl}$ in absolute ethanol (2 ml per mmol of oxime) over a period of five minutes. The mixture was warmed to room temperature and stirred for a further 24 h , then cooled and a saturated solution of sodium carbonate added until the acid was neutralised. The mixture was extracted with dichloromethane, the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, and the residue purified by short path distillation at reduced pressure or by column chromatography.

N -Benzyl- O -allylhydroxylamine $\mathbf{1 2}^{21}$

From oxime 5 ($2.0 \mathrm{~g}, 12.4 \mathrm{mmol}$) and pyridine-borane complex ($3.5 \mathrm{~g}, 37.2 \mathrm{mmol}$) using method A, $12(1.90 \mathrm{~g}, 94 \%)$ was obtained as a colourless oil after short path distillation (bp $110^{\circ} \mathrm{C}, 4 \mathrm{mmHg}$); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3260,1645,1454,1421 ; \delta_{\mathrm{H}}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.18(2 \mathrm{H}, \mathrm{app} \mathrm{dt}, J$ $5.9,1.3, \mathrm{OCH}_{2}$), $5.18(1 \mathrm{H}$, app dq$, J 10.4,1.3, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.26$ (1 H , app dq, $J 17.3,1.6, \mathrm{CH}=\mathrm{CH} H), 5.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.91$ (1 H , ddt, J 17.3, 10.4 and $5.9, \mathrm{C} H=\mathrm{CH}_{2}$), $7.28-7.38(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.2\left(\mathrm{PhCH}_{2}\right)$, 74.8 $\left(\mathrm{OCH}_{2}\right), 117.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.3,128.2,128.8$ (aromatic CH$)$, $134.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 137.6(\mathrm{ArC}) ; \mathrm{m} / \mathrm{z}(\mathrm{APCI}) 164\left(\mathrm{MH}^{+}, 100 \%\right)$, $108\left(\mathrm{PhCH}_{2} \mathrm{NH}_{3}{ }^{+}, 11 \%\right), 106\left(\mathrm{PhCHNH}_{2}{ }^{+}, 22 \%\right)$; calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$: C 73.6, H 8.0, N 8.6\%. Found: C 73.9, H 8.1, N 9.0\%.

N-Benzyl- O -(but-2-enyl)hydroxylamine 13

From oxime $6(1.83 \mathrm{~g}, 10.4 \mathrm{mmol})$ and pyridine-borane complex ($2.92 \mathrm{~g}, 31.2 \mathrm{mmol}$) using method A, $13(1.56 \mathrm{~g}, 85 \%)$ was obtained as a colourless oil $(E: Z 76: 24)$ by short path distillation (bp $112{ }^{\circ} \mathrm{C}, 4 \mathrm{mmHg}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3259 (m), 2915 (s), 1950 (w), 1877 (w), 1808 (w), 1673 (m), 1604 (m); δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.64\left(3 \mathrm{H}, \mathrm{ddt}, J 6.8,1.7,0.8,(Z)-\mathrm{CH}_{3}\right), 1.71$ (3 H , app dq, $\left.\left.J 6.4,1.3,(E)-\mathrm{CH}_{3}\right), 4.07(2 \mathrm{H}, \mathrm{s},(E)-\mathrm{PhCH})_{2}\right)$, $4.08\left(2 \mathrm{H}, \mathrm{s},(Z)-\mathrm{PhCH}_{2}\right), 4.10(2 \mathrm{H}$, app dquintet, $J 6.5,1.1$, $\left.(E)-\mathrm{OCH}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{m},(Z)-\mathrm{OCH}_{2}\right), 5.52-5.56(1 \mathrm{H}, \mathrm{m}$, $(E)-$ and $\left.(Z)-\mathrm{CH}=\mathrm{CHCH}_{3}\right), 5.56-5.76(2 \mathrm{H}, \mathrm{m},(E)-$ and $(Z)-$ $\mathrm{CH}=\mathrm{CHCH}_{3}$ and NH$), 7.26-7.39(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.1\left((\mathrm{Z})-\mathrm{CH}_{3}\right), 17.8\left((E)-\mathrm{CH}_{3}\right), 56.4$ $\left(\mathrm{NCH}_{2}\right)$, $69.1\left((Z)-\mathrm{OCH}_{2}\right), 74.6\left((E)-\mathrm{OCH}_{2}\right), 126.0,126.8$, 127.0, 127.3, 128.3, 128.5, 128.9, 130.3 (aromatic $C \mathrm{H}$ and $\mathrm{CH}=$ $C H$), 137.5 (ipso-C); m/z (APCI) $178\left(\mathrm{MH}^{+}, 40 \%\right), 124$
$\left(\mathrm{PhCH}_{2} \mathrm{NHOH}_{2}{ }^{+}, 20 \%\right), 107(100 \%), 106\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CH}=\right.$ $\mathrm{CHCH}_{2} \mathrm{OH}, 70 \%$); HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}^{+}$: 178.1232; Found: 178.1232.

N -Benzyl- O -(3-methylbut-2-enyl)hydroxylamine 14

From oxime $7(2.50 \mathrm{~g}, 13.2 \mathrm{mmol})$ and pyridine-borane complex ($3.69 \mathrm{~g}, 39.7 \mathrm{mmol}$) using method A, 14 ($2.02 \mathrm{~g}, 80 \%$) was obtained as a colourless oil by column chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O}$-petrol (40-60), SiO_{2}). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3258 (m), 2914 (s), 1949 (w), 1876 (w), 1809 (w), 1674 (s), 1604 (w); $\delta_{\text {H }}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$), $1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.08$ $\left.(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH})_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{OCH}_{2}\right), 5.35(1 \mathrm{H}$, tsept, $\left.J 7.1,1.4, \mathrm{OCH}_{2} \mathrm{CH}\right), 5.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 7.28-7.42(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right)$, $56.5\left(\mathrm{PhCH}_{2}\right), 70.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 120.4\left(\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.6$, 128.6, 129.2 (aromatic $C H$), 138.0, 138.2 (ipso- C and $\mathrm{CH}=$ $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z(\mathrm{APCI}) 192\left(\mathrm{MH}^{+}, 60 \%\right), 179(55 \%), 136(25 \%)$, $124(80 \%), 108(100 \%), 106(80 \%)$) HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}^{+}: 192.1388$. Found: 192.1380.

(E)-N-Benzyl-O-(3-phenylallyl)hydroxylamine 15

From oxime 8 ($3.9 \mathrm{~g}, 16.5 \mathrm{mmol}$) and pyridine-borane complex $(4.7 \mathrm{~g}, 50.5 \mathrm{mmol})$ using method B, $15(3.32 \mathrm{~g}, 84 \%)$ was obtained as a colourless oil by column chromatography ($33 \% \mathrm{Et}_{2} \mathrm{O}$-petrol ($40-60$), SiO_{2}) which solidified on standing to give a cream solid ($\mathrm{mp} 35-36{ }^{\circ} \mathrm{C}$). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3260(\mathrm{~m})$, 3208 (s), 1950 (w), 1878 (w), 1807 (w), 1657 (w), 1599 (m), 1578 $(\mathrm{m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.33(2 \mathrm{H}, \mathrm{dd}$, $\left.J 6.4,1.3, \mathrm{OCH}_{2}\right), 5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 6.27(1 \mathrm{H}, \mathrm{dt}, J 15.9,6.4$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 6.59\left(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{C} H=\mathrm{CHCH}_{2}\right), 7.23-7.40$ $(10 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.7\left(\mathrm{PhCH}_{2}\right)$, $74.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7,126.6,127.5,127.7,128.5,128.6,129.1$, $133.2(\mathrm{CH}=\mathrm{CH}$ and aromatic $C \mathrm{H}), 136.8,137.6$ (ipso-C): m/z (APCI) $240\left(\mathrm{MH}^{+}, 5 \%\right), 133(75 \%), 117$ (30\%), 105 (100%); calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$: C 80.3, H 7.2, N 5.85. Found: C 80.1, H 7.0, N 5.65\%

N -Benzyl- O -(1-methyl-allyl)hydroxylamine 16

From oxime 9 ($878 \mathrm{mg}, 5.02 \mathrm{mmol}$) and pyridine-borane complex ($1.9 \mathrm{ml}, 15 \mathrm{mmol}$) using method B, 16 ($614 \mathrm{mg}, 69 \%$) was obtained as a colourless oil by column chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$-petrol (40-60), SiO_{2}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3259 (m), 2980 (s), 1950 (w), 1871 (w), 1811 (w), 1642 (w), 1604 (w); δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.20\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}_{3}\right), 4.11(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 4.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right), 5.12(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CH}=$ $\mathrm{C} H \mathrm{H}), 5.20(1 \mathrm{H}$, app dt, $J 17.3,1.3, \mathrm{CH}=\mathrm{CH} H), 5.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{N} H$), 5.81 (1 H , ddd, $J 17.3,10.4,6.7, \mathrm{C} H=\mathrm{CH}_{2}$), $7.26-7.37$ $(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.4\left(\mathrm{CH}_{3}\right), 56.8$ $\left(\mathrm{PhCH}_{2}\right), 79.7\left(\mathrm{CHCH}_{3}\right), 115.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.6,128.6$, 129.4 (aromatic CH), 137.9 (ipso- C), $140.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ (APCI) $178\left(\mathrm{MH}^{+}, 100 \%\right), 124\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2} \mathrm{OH}^{+}, 15 \%\right), 107$ (15\%); HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}^{+}$: 178.1232. Found: 178.1229.

N -Benzyl- O -(1-methylbut-2-enyl)hydroxylamine 17

From oxime 10 ($432 \mathrm{mg}, 2.29 \mathrm{mmol}$) and pyridine-borane complex ($0.86 \mathrm{ml}, 6.86 \mathrm{mmol}$) using method B, 17 (356 mg , 82%) was obtained as a colourless oil ($E: Z 83: 17$) by column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol ($40-60$), SiO_{2}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3258 (m), 2973 (s), 1948 (w), 1878 (w), 1808 (w), 1674 (m), $1604(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16(3 \mathrm{H}, \mathrm{d}, J 6.4,(Z)-$ $\left.\mathrm{OCHCH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J 6.5,(E)-\mathrm{OCHCH}_{3}\right), 1.65(3 \mathrm{H}, \mathrm{dd}$, $\left.J 6.9,1.8,(Z)-\mathrm{CH}=\mathrm{CHCH}_{3}\right), 1.69(3 \mathrm{H}, \mathrm{ddd}, J 6.4,1.5,0.6$, $\left.(E)-\mathrm{CH}=\mathrm{CHCH}_{3}\right), 4.04\left(2 \mathrm{H}, \mathrm{s},(E)-\mathrm{PhCH}_{2}\right), 4.05(2 \mathrm{H}, \mathrm{s},(Z)-$ $\left.\mathrm{PhCH}_{2}\right), 4.09\left(1 \mathrm{H}, \mathrm{m},(E)-\mathrm{OC} H \mathrm{CH}_{3}\right), 4.52(1 \mathrm{H}, \mathrm{dqd}, J 8.7,6.4$, 1.1, $\left.(Z)-\mathrm{OC} H \mathrm{CH}_{3}\right), 5.35(1 \mathrm{H}$, ddq, $J 11.0,8.7,1.8,(Z)-\mathrm{CH}=$ $\left.\mathrm{CHCH}_{3}\right), 5.41\left(1 \mathrm{H}, \mathrm{ddq}, J 15.4,7.4,1.5,(E)-\mathrm{CH}=\mathrm{CHCH}_{3}\right)$, $5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.58(1 \mathrm{H}, \mathrm{dqd}, J 11.0,6.9,1.1,(Z)-\mathrm{CH}=$
$\left.\mathrm{CHCH}_{3}\right), 5.65\left(1 \mathrm{H}, \mathrm{dqd}, J 15.4,6.4,0.9,(E)-\mathrm{CH}=\mathrm{CHCH}_{3}\right)$, $7.28-7.37(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.8$ $\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 56.7\left(\mathrm{PhCH}_{2}\right), 79.1\left(\mathrm{CH}_{3} \mathrm{CH}\right), 127.3$, 127.4, 128.3, 129.1, $133.0(\mathrm{CH}=\mathrm{CH}$ and aromatic $C \mathrm{H}), 137.7$ (ipso-C); m/z (APCI) $192\left(\mathrm{MH}^{+}, 10 \%\right), 179(40 \%), 124$ $\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2} \mathrm{OH}^{+}, 100 \%\right)$; HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}^{+}$: 192.1388. Found: 192.1396.

N -(1-Phenylethyl)- O -allylhydroxylamine $\mathbf{1 8}^{10}$

From allyl oxime $\mathbf{1 1}(1.21 \mathrm{~g}, 6.91 \mathrm{mmol})$ and pyridine-borane complex ($2.40 \mathrm{~g}, 20.7 \mathrm{mmol}$) using method B, $18(1.02 \mathrm{~g}, 83 \%)$ was obtained as a colourless oil by short path distillation (bp $\left.104^{\circ} \mathrm{C}, 4 \mathrm{mmHg}\right) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39(3 \mathrm{H}, \mathrm{d}, J 6.7$, CH_{3}), $4.11(1 \mathrm{H}, \mathrm{dd}, J 12.6,5.9, \mathrm{OCHH}), 4.17(1 \mathrm{H}, \mathrm{dd}, J 12.6$, 5.9 , OCHH), 4.17 ($\left.1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CH}_{3} \mathrm{CH}\right), 5.16(1 \mathrm{H}$, app d, J $10.4, \mathrm{CH}=\mathrm{C} H \mathrm{H}$), 5.23 (1 H , app dq, $J 17.3,1.5, \mathrm{CH}=\mathrm{CH} H)$, $5.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.88\left(1 \mathrm{H}, \mathrm{ddt}, J 17.3,10.4,5.9, \mathrm{C} H=\mathrm{CH}_{2}\right)$, $7.26-7.38(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.

General procedure for the rearrangement reaction

n-Butyllithium (1.1-1.3 eq.) was added to a 0.1 M solution of hydroxylamine (1 eq.) in anhydrous THF at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. After stirring for 1 h the reaction was allowed to warm to room temperature and was stirred for a further 30 min . The reaction was quenched with distilled water, extracted with diethyl ether, the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography on deactivated silica gel ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in petrol) to give the desired hydroxylamine rearrangement product.

N-Benzyl- N-(1-phenylallyl)hydroxylamine 19^{33}

Addition of n-butyllithium ($1.66 \mathrm{M}, 1.26 \mathrm{ml}, 2.09 \mathrm{mmol}$) and the hydroxylamine 15 ($500 \mathrm{mg}, 2.09 \mathrm{mmol}$) gave the hydroxylamine $19(201 \mathrm{mg}, 40 \%)$ as a cream solid ($\mathrm{mp} 91-92^{\circ} \mathrm{C}$) after chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol ($40-60$), SiO_{2}). $v_{\max } / \mathrm{cm}^{-1}$ (KBr disc) $3213(\mathrm{~m}), 2866(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.77$ $(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{PhCHH}), 3.91(1 \mathrm{H}, \mathrm{br}$ d, $\mathrm{PhCH} H), 4.31(1 \mathrm{H}, \mathrm{d}$, $J 8.5, \mathrm{NCHPh}), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.25(1 \mathrm{H}, \mathrm{dd}, J 10.0,1.3$, $\mathrm{CH}=\mathrm{CHH}), 5.31(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{CH}=\mathrm{CH} H), 6.18(1 \mathrm{H}$, ddd, $J 17.3,10.0,8.5), 7.21-7.53(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 61.1\left(\mathrm{PhCH}_{2}\right), 75.3(\mathrm{PhCH}), 117.9(\mathrm{CH}=$ $C \mathrm{H}_{2}$), 127.3, 127.5, 128.2, 128.3, 128.7, 129.6 (aromatic $C \mathrm{H}$), $137.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 138.0, 141.0 (ipso-C); m / z (CI) $240\left(\mathrm{MH}^{+}\right.$, 100%), $224(32 \%), 222\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 27 \%\right), 117(\mathrm{PhCHCH}=$ $\mathrm{CH}_{2}{ }^{+}, 45 \%$); HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}^{+}: 240.1388$ Found: 240.1383.

N-Benzyl- N-allylhydroxylamine $\mathbf{2 2}{ }^{32}$

Addition of n-butyllithium $(1.66 \mathrm{M}, 0.96 \mathrm{ml}, 1.60 \mathrm{mmol})$ to the hydroxylamine $\mathbf{1 2}$ ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$) gave the hydroxylamine $22(122 \mathrm{mg}, 61 \%)$ as a yellow oil after chromatography (10% $\mathrm{Et}_{2} \mathrm{O}-$ petrol (40-60), SiO_{2}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3217, 1644, 1494, 1453 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.36\left(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCH}_{2} \mathrm{CH}=\right)$, $3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.20(1 \mathrm{H}$, app d, $J 10.3, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.24$ (1 H , app dq, $J 17.2,1.4, \mathrm{CH}=\mathrm{CH} H$), $5.95(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.3$, $\left.6.5, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.27-7.35(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 62.4,63.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}=\right), 118.7(\mathrm{CH}=$ $\left.C \mathrm{H}_{2}\right)$, 127.4, 128.2, 129.9 (aromatic CH$)$, $133.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 136.9 (ipso-C); m/z (APCI) 164 ($\mathrm{MH}^{+}, 100 \%$), 148 (7\%); HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}^{+}: 164.1075$. Found: 164.1067.

N-Benzyl- N-(1-methylallyl)hydroxylamine 23

Addition of n-butyllithium ($2.59 \mathrm{M}, 0.48 \mathrm{ml}, 1.24 \mathrm{mmol}$) to the hydroxylamine $\mathbf{1 3}$ ($200 \mathrm{mg}, 1.13 \mathrm{mmol}$) gave the hydroxylamine 23 ($118 \mathrm{mg}, 59 \%$) as a yellow oil after chromatography (10% $\mathrm{Et}_{2} \mathrm{O}-$ petrol (40-60), SiO_{2}). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3236, 1639, 1496, $1454 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}_{3}\right), 3.33(1 \mathrm{H}$,
app quintet, $\left.J 6.9, \mathrm{CHCH}_{3}\right), 3.69(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{PhCHH}), 3.87$ $(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{PhCH} H), 5.18(1 \mathrm{H}, \mathrm{d}, J 17.5, \mathrm{CH}=\mathrm{CHH}), 5.20$ $(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CH}=\mathrm{CH} H), 5.45(1 \mathrm{H}, \mathrm{br}$ s, OH$), 5.97(1 \mathrm{H}, \mathrm{ddd}$, $\left.J 17.5,10.4,7.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.25-7.44(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.5\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{PhCH}_{2}\right), 64.6$ $\left(\mathrm{CHCH}_{3}\right), 116.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.2,128.2$, 129.7 (aromatic CH), 137.9 (ipso-C), $138.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; m/z (APCI) $178\left(\mathrm{MH}^{+}\right.$, $100 \%), 176(10 \%), 162\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}^{+}, 31 \%\right), 160\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}^{+}, 29 \%\right)$, $124\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2} \mathrm{OH}^{+}, 58 \%\right), 122\left(\mathrm{PhCH}_{2} \mathrm{NOH}^{+}, 8 \%\right), 106$ ($\mathrm{PhCHNH}_{2}{ }^{+}, 46 \%$); HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}^{+}$: 178.1232. Found: 178.1233.

N-Benzyl- N-(1,1-dimethylallyl)hydroxylamine 24

Addition of n-butyllithium ($1.66 \mathrm{M}, 0.79 \mathrm{ml}, 1.31 \mathrm{mmol}$) to the hydroxylamine $\mathbf{1 4}(250 \mathrm{mg}, 1.31 \mathrm{mmol})$ gave, after stirring at $-78^{\circ} \mathrm{C}$ for 1 h , then heating at reflux for 2 h , the hydroxylamine $24(119 \mathrm{mg}, 60 \%)$ as a yellow oil after chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}-$ petrol (40-60), SiO_{2}). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3536 (s), 3442 (br, m), $1640(\mathrm{~m}), 1606(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.31(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.17(1 \mathrm{H}, \mathrm{d}$, $J 10.8, \mathrm{CH}=\mathrm{CHH}), 5.21(1 \mathrm{H}, \mathrm{d}, J 17.8, \mathrm{CH}=\mathrm{CH} H), 5.97$ ($1 \mathrm{H}, \mathrm{dd}, J 17.8,10.8, \mathrm{C} H=\mathrm{CH}_{2}$), $7.26-7.35(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 57.1\left(\mathrm{PhCH}_{2}\right), 63.1$ $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 113.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.1,128.5,129.5 \text { (aromatic }}\right.$ $\mathrm{CH}), 139.9$ (ipso-C), $144.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; ~ m / z$ (APCI) $192\left(\mathrm{MH}^{+}\right.$, 15%), 159 (40%), 124 (100%); HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}^{+}: 192.1388$. Found: 192.1380.

(E)-N-Benzyl- N -(but-2-enyl)hydroxylamine 25

Addition of n-butyllithium ($2.5 \mathrm{M}, 0.52 \mathrm{ml}, 1.31 \mathrm{mmol}$) and the hydroxylamine $\mathbf{1 6}$ ($211 \mathrm{mg}, 1.19 \mathrm{mmol}$) gave the hydroxylamine 25 ($115 \mathrm{mg}, 55 \%$) as a colourless oil after chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$-petrol (40-60), SiO_{2}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3222 (s), 2917 (s), 1949 (w), 1878 (w), 1809 (w), 1671 (w), 1604 (w); δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.72\left(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CH}_{3}\right), 3.33(2 \mathrm{H}, \mathrm{d}, J 6.2$, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 3.78(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} 2 \mathrm{Ph}), 5.57-5.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right.$ CH and OH$), 5.70\left(1 \mathrm{H}, \mathrm{dq}, J 15.4,5.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.24-$ $7.36(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.8\left(\mathrm{CH}_{3}\right)$, 61.4, $63.4\left(\mathrm{PhCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 126.4,127.5,128.4$, $130.2,130.4(\mathrm{CH}=\mathrm{CH}$ and aromatic $C \mathrm{H}), 137.2$ (ipso-C); m / z (APCI) $178\left(\mathrm{MH}^{+}, 100 \%\right), 160\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 15 \%\right), 147(30 \%)$, $124\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2} \mathrm{OH}^{+}, 55 \%\right), 106\left(\mathrm{PhCH}=\mathrm{NH}_{2}{ }^{+}, 35 \%\right)$; HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}^{+}: 178.1232$. Found: 178.1232.

N-Benzyl- N-(1-methylbut-2-enyl)hydroxylamine 26

Addition of n-butyllithium ($2.5 \mathrm{M}, 0.76 \mathrm{ml}, 1.90 \mathrm{mmol}$) to the hydroxylamine 17 ($330 \mathrm{mg}, 1.73 \mathrm{mmol}$) gave the hydroxylamine $26(183 \mathrm{mg}, 55 \%)$ as a colourless oil after chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}-$ petrol ($40-60$), SiO_{2}). $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3234 (br s), 2974 (s), 1948 (w), 1876 (w), 1809 (w), 1752 (w), 1667 (m), 1605 (m); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.24\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NCHCH}_{3}\right), 1.74$ $\left(3 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{CH}=\mathrm{CHCH}_{3}\right), 3.28(1 \mathrm{H}$, app quintet, $J 6.6$, $\left.\mathrm{NCHCH}_{3}\right), 3.65(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NCHH}), 3.87(1 \mathrm{H}, \mathrm{d}, J 13.2$, $\mathrm{NCH} H), 5.32-5.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.53-5.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ $\mathrm{CH}), 7.23-7.36(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 18.0 and $18.1\left(\mathrm{CH}_{3}\right), 60.6\left(\mathrm{PhCH}_{2}\right), 63.8\left(\mathrm{CH}_{3} \mathrm{CH}\right), 127.1$, 128.0, 128.2, 129.7, $131.1(\mathrm{CH}=\mathrm{CH}$ and aromatic $C \mathrm{H}), 138.0$ (ipso-C); m / z (APCI) $192\left(\mathrm{MH}^{+}, 20 \%\right), 124\left(\mathrm{PhCH}_{2} \mathrm{NHOH}_{2}{ }^{+}\right.$, 100%); HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}^{+}$: 192.1388. Found: 192.1389.

N-(1-Phenylethyl)- N -allylhydroxylamine $27{ }^{10}$

Addition of n-butyllithium ($2.10 \mathrm{M}, 0.60 \mathrm{ml}, 1.24 \mathrm{mmol}$) to the hydroxylamine $\mathbf{1 8}$ ($200 \mathrm{mg}, 1.13 \mathrm{mmol}$) gave the hydroxylamine $27(105 \mathrm{mg}, 53 \%)$ as a yellow oil after chromatography (10% $\mathrm{Et}_{2} \mathrm{O}-$ petrol $(40-60), \mathrm{SiO}_{2}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.49(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{CH}_{3}\right), 3.25-3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.83(1 \mathrm{H}, \mathrm{q}, J 6.6$,
$\left.\mathrm{CH}_{3} \mathrm{CH}\right), 5.18(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}=\mathrm{CH} H), 5.18(1 \mathrm{H}, \mathrm{d}, J$ 17.3, $\mathrm{CH}=\mathrm{CH} H), 5.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.26-7.40(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.

General procedure for the reduction of the hydroxylamines

Hydroxylamine (1 eq. .) was dissolved in $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ and zinc powder added (5 eq.) cautiously. The reaction was then heated at $80^{\circ} \mathrm{C}$ for 1 h , cooled and neutralised with 2 M NaOH . The white suspension obtained was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation afforded the allylic amine that was determined to be $>95 \%$ pure from the ${ }^{1} \mathrm{H}$ NMR spectrum.

N-Benzyl- N-allylamine $28{ }^{34}$

From hydroxylamine $22(100 \mathrm{mg}, 0.61 \mathrm{mmol})$ and zinc powder ($200 \mathrm{mg}, 3.1 \mathrm{mmol}$), the desired amine $28(81 \mathrm{mg}, 90 \%$) was obtained as a colourless oil. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.29(2 \mathrm{H}, \mathrm{dt}$, $J 6.0,1.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.10-5.26$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.95\left(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.3,6.0, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $7.21-7.36(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.

N -Benzyl- N -(1-methylallyl)amine $29{ }^{35}$

From hydroxylamine 23 ($100 \mathrm{mg}, 0.564 \mathrm{mmol}$) and zinc powder ($183 \mathrm{mg}, 2.82 \mathrm{mmol}$), the desired amine 29 ($85 \mathrm{mg}, 94 \%$) was obtained as an oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) 3318 (w), 2962 (s), 1640 (w), $1605(\mathrm{w}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.20\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.52$, $(1 \mathrm{H}$, br s, NH$), 3.24\left(1 \mathrm{H}\right.$, app quintet, $\left.J 6.8, \mathrm{CH}_{3} \mathrm{CH}\right), 3.70$ ($1 \mathrm{H}, \mathrm{d}, J$ 13.1, $\mathrm{PhC} H \mathrm{H}$), 3.82 ($1 \mathrm{H}, \mathrm{d}, J$ 13.1, $\mathrm{PhCH} H$), 5.10 $(1 \mathrm{H}, \mathrm{dd}, J 10.2,1.5, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.15(1 \mathrm{H}$, app d, $J 17.2$, $\mathrm{CH}=\mathrm{CH} H), 5.74\left(1 \mathrm{H}\right.$, ddd, $\left.J 17.2,10.2,7.7, \mathrm{C} H=\mathrm{CH}_{2}\right)$, 7.23-7.36 ($5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.7$ $\left(\mathrm{CH}_{3}\right), 51.3\left(\mathrm{PhCH}_{2}\right), 56.0\left(\mathrm{CHCH}_{3}\right), 114.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.8$, 128.1, 128.4 (aromatic $C H$), 140.5 (ipso- C), $142.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; m / z (APCI) 162 ($\mathrm{MH}^{+}, 100 \%$), 108 (5%); calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}^{+}: 162.1283$. Found: 162.1284.

N-Benzyl- N-(1,1-dimethylallyl)amine 30^{36}

From hydroxylamine 24 ($51 \mathrm{mg}, 0.27 \mathrm{mmol}$) and zinc powder ($88 \mathrm{mg}, 1.36 \mathrm{mmol}$), the desired amine $30(43 \mathrm{mg}, 92 \%$) was obtained as an oil. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.08-5.16(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.86(1 \mathrm{H}, \mathrm{dd}$, $\left.J 17.8,10.4, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.23-7.34(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; δ_{C} $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.8\left(2 \times \mathrm{CH}_{3}\right), 47.5\left(\mathrm{PhCH}_{2}\right), 54.7$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 112.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.0,128.4,128.5$ (aromatic $C \mathrm{H}), 141.3$ (ipso-C), $146.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$.

N-Benzyl- N-(1-phenylallyl)amine $31{ }^{37}$

From hydroxylamine $\mathbf{1 9}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and zinc powder ($140 \mathrm{mg}, 2.1 \mathrm{mmol}$), the desired amine $31(85 \mathrm{mg}, 91 \%$) was obtained as a yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.69(1 \mathrm{H}, \mathrm{s}$, $\mathrm{N} H), 3.73(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{PhCHH}), 3.76(1 \mathrm{H}, \mathrm{d}, J 13.3$, $\mathrm{PhCH} H), 4.24\left(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 5.14(1 \mathrm{H}, \mathrm{d}, J 10.1$, $\mathrm{CH}=\mathrm{CHH}), 5.24(1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{CH}=\mathrm{CH} H), 5.97(1 \mathrm{H}, \mathrm{ddd}, J$ 17.1, 10.1, $\left.7.1, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.24-7.54(10 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.

(E)- N-Benzyl- N-(but-2-enyl)amine $32{ }^{38}$

From hydroxylamine $\mathbf{2 5}$ ($109 \mathrm{mg}, 0.615 \mathrm{mmol}$) and zinc powder ($201 \mathrm{mg}, 3.08 \mathrm{mmol}$), the desired amine 32 ($69 \mathrm{mg}, 70 \%$) was obtained as a pale yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.70$ ($3 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{CH}_{3}$), $3.22\left(2 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 3.79$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}$), $5.55-5.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 7.25-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.7\left(\mathrm{CH}_{3}\right), 51.0,53.1$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 126.8,127.4,128.1,128.3,129.2$ (aromatic and alkene $C H$), 140.2 (ipso- C).

N -Benzyl- N -(1-methylbut-2-enyl)amine $33{ }^{39}$

From hydroxylamine $\mathbf{2 6}$ ($181 \mathrm{mg}, 0.948 \mathrm{mmol}$) and zinc powder ($310 \mathrm{mg}, 4.74 \mathrm{mmol}$), the desired amine $33(137 \mathrm{mg}, 83 \%$) was
obtained as a pale yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3168 (br m), 2971 (s), 1947 (w), 1874 (w), 1808 (w), 1668 (w), 1604 (m); δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCHCH}_{3}\right), 1.71(3 \mathrm{H}, \mathrm{dd}$, $\left.J 6.4,1.6, \mathrm{CH}=\mathrm{CHCH}_{3}\right), 3.18(1 \mathrm{H}$, app quintet, $J 6.9$, $\left.\mathrm{NCHCH}_{3}\right), 3.68(1 \mathrm{H}, \mathrm{d}, J 13.1, \mathrm{PhCHH}), 3.79(1 \mathrm{H}, \mathrm{d}, J 13.1$, $\mathrm{PhCH} H), 5.35\left(1 \mathrm{H}, \mathrm{ddq}, J 15.2,7.9,1.6, \mathrm{C} H=\mathrm{CHCH}_{3}\right), 5.55$ ($1 \mathrm{H}, \mathrm{dqd}, J 15.2,6.4,0.7, \mathrm{CH}=\mathrm{CHCH}_{3}$), $7.22-7.37(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.7\left(\mathrm{CH}=\mathrm{CHCH}_{3}\right), 22.0$ $\left(\mathrm{NCHCH}_{3}\right), 51.3\left(\mathrm{NCH}_{2}\right), 55.2\left(\mathrm{NCHCH}_{3}\right), 125.8(\mathrm{CH}=\mathrm{CH})$, 126.8, 128.2, 128.4 (aromatic $C H$), $135.4(\mathrm{CH}=\mathrm{CH}), 140.7$ (ipso-C); m/z (APCI) $175\left(\mathrm{MH}^{+}, 5 \%\right), 163$ (10%), 124 (20\%), $108\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2}{ }^{+}, 100 \%\right)$; calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}^{+}$: 176.1439 . Found: 176.1438.

N -(1-Phenylethyl)- N -allylamine 34^{40}

From hydroxylamine 27 ($100 \mathrm{mg}, 0.56 \mathrm{mmol}$) and zinc powder ($183 \mathrm{mg}, 2.8 \mathrm{mmol}$), the desired amine $34(85 \mathrm{mg}, 94 \%)$ was obtained as a colourless oil. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{CH}_{3}\right), 1.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 3.11\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{NCH}_{2}\right)$, $3.82\left(1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CHCH}_{3}\right), 5.08(1 \mathrm{H}$, ddt, $J 10.2,1.9,1.3, \mathrm{CH}=$ $\mathrm{C} H \mathrm{H}), 5.14(1 \mathrm{H}$, app dq$, J 17.2,1.6, \mathrm{CH}=\mathrm{CH} H), 5.91(1 \mathrm{H}, \mathrm{ddt}$, $\left.J 17.2,10.2,6.0, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.22-7.40(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$.

Acknowledgements

The authors wish to acknowledge the support of the EPSRC for a studentship and the SCI for a Messel scholarship (T. G. R. S.) and New College, Oxford for a Junior Research Fellowship (A. D. S.) and Fundação para a Ciência e a Tecnologia (Programa Praxis XXI) for funding (F. C. T.).

References

1 For selected reviews concerning sigmatropic rearrangements see K. Neuschütz, J. Velker and R. Neier, Synthesis, 1998, 227; D. Enders, M. Knopp and R. Schiffers, Tetrahedron: Asymmetry, 1996, 7, 1847; A. W. Murray, Org. React. Mech., 1997, 473; C. W. Spangler, Chem. Rev., 1976, 76, 187.

2 For reviews see T. Nakai and K. Mikami, Chem. Rev., 1986, 86, 885; K. Mikami and T. Nakai, Synthesis, 1991, 594; R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1979, 18, 563; A. H. Li, L. X. Dai and V. K. Aggarwal, Chem. Rev., 1997, 97, 2341.
3 For related rearrangement processes see J. E. Baldwin and R. E. Peavy, Tetrahedron Lett., 1968, 5029; J. E. Baldwin, J. DeBernardis and J. E. Patrick, Tetrahedron Lett., 1970, 353; J. E. Baldwin and F. J. Urban, J. Chem. Soc., Chem. Commun., 1970, 165; J. E. Baldwin and J. E. Patrick, J. Am. Chem. Soc., 1971, 93, 3556; J. E. Baldwin and W. F. Erickson, J. Chem. Soc., Chem. Commun., 1971, 359.
4 For selected manuscripts see C. R. Hauser, R. M. Manyik, W. R. Brasen and P. L. Bayless, J. Org. Chem., 1955, 20, 1119; C. L. Bumgardner, J. Am. Chem. Soc., 1963, 85, 73; S. H. Pine, Tetrahedron Lett., 1967, 3393; W. Q. Beard and C. R. Hauser, J. Org. Chem., 1960, 25, 334; W. Q. Beard and C. R. Hauser, J. Org. Chem., 1961, 26, 371; G. C. Jones, W. Q. Beard and C. R. Hauser, J. Org. Chem., 1963, 28, 199; S. J. Campbell and D. Darwish, Can. J. Chem., 1976, 54, 193; M. Nakano and Y. Sato, J. Org. Chem., 1987, 52, 1844; H. Sugiyama, Y. Sato and N. Shirai, Synthesis, 1988, 988; T. Tanaka, N. Shirai, J. Sugimori and Y. Sato, J. Org. Chem., 1992, 57, 5034.
5 For [2,3] Meisenheimer rearrangements see A. Guarna, E. G. Occhiato, M. Pizzetti, D. Scarpi, S. Sisi and M. van Sterkenburg, Tetrahedron: Asymmetry, 2000, 11, 4227; J. Blanchet, M. Bonin, L. Micouin and H.-P. Husson, Tetrahedron Lett., 2000, 41, 8279; D. Enders and H. Kempen, Synlett, 1994, 969; R. Nordmann and P. Gull, Helv. Chim. Acta, 1986, 69, 246 . For [1,2] Meisenheimer rearrangements see H. Sashida and T. Tsuchiya, Chem. Pharm. Bull., 1984, 32, 4117; T. Tsuchiya and H. Sashida, Heterocycles, 1980, 14, 1925.

6 P. Bickart, F. W. Carson, J. Jacobus, E. G. Miller and K. Mislow, J. Am. Chem. Soc., 1968, 90, 4869; R. Tang and K. Mislow, J. Am. Chem. Soc., 1970, 92, 2100; T. Sato, J. Otera and H. Nozaki, J. Org. Chem., 1989, 54, 2779.
7 For examples see G. Wittig and E. Stahnecker, Liebigs Ann. Chem., 1957, 69, 605; Y. Makisumi and S. Notzumoto, Tetrahedron Lett., 1966, 7, 6393; G. Wittig, Angew. Chem., 1954, 66, 10; U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 1970, 9, 763.

8 O. Kitagawa, S.-I. Momose, Y. Yamada, M. Shiro and T. Taguchi, Tetrahedron Lett., 2001, 42, 4865; J. C. Anderson and A. Flaherty, J. Chem. Soc., Perkin Trans. 1, 2001, 267; J. C. Anderson, A. Flaherty and M. E. Swarbrick, J. Org. Chem., 2000, 65, 9152; I. Coldham, M. L. Middleton and P. L. Taylor, J. Chem. Soc., Perkin Trans. 1, 1998, 2817; C. Vogel, Synthesis, 1997, 497; A. Atsushi, N. Doi and K. Tamao, J. Am. Chem. Soc., 1997, 119, 233; M. T. Reetz and D. Schinzer, Tetrahedron Lett., 1975, 16, 3485.

9 P. Somfai, T. Jarevang, U. M. Lindstrom and A. Svensson, Acta. Chem. Scand., 1997, 51, 1024; J. Aehman and P. Somfai, Tetrahedron, 1995, 51, 9747; I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, Tetrahedron Lett., 1995, 36, 3557; P. Molina, M. Alajarin, A. Vidal, M. De la Concepcion Foces-Foces and F. Hernandez Cano, Tetrahedron, 1989, 45, 4263.

10 M. R. G. da Costa, M. J. M. Curto, S. G. Davies, J. Sanders and F. C. Teixeira, J. Chem. Soc., Perkin Trans. 1, 2001, 2850.

11 For previous use of the N-allyl $-N$ - α-methylbenzyllithium amide in synthesis see (a) S. G. Davies and D. R. Fenwick, J. Chem. Soc., Chem. Commun., 1995, 1109; (b) S. G. Davies, C. J. R. Hedgecock and J. M. McKenna, Tetrahedron: Asymmetry, 1995, 6, 2507; (c) S. G. Davies, C. J. R. Hedgecock and J. M. McKenna, Tetrahedron: Asymmetry, 1995, 6, 827; (d) S. G. Davies and D. R. Fenwick, Chem. Commun., 1997, 567; (e) S. G. Davies, D. R. Fenwick and O. Ichihara, Tetrahedron: Asymmetry, 1997, 8, 3387; (f) S. G. Davies, N. M. Garrido, P. A. McGee and J. P. Shilvock, J. Chem. Soc., Perkin Trans. 1, 1999, 3105.

12 A. Eckersley and N. A. J. Rogers, Tetrahedron Lett., 1974, 15, 1661.

13 S. Ranganathan, D. Ranganathan, R. S. Sidhu and A. K. Mehrotra, Tetrahedron Lett., 1973, 14, 3577.
14 R. Grigg and J. Markandu, Tetrahedron Lett., 1991, 32, 279.
15 S. U. Pandya, C. Garçon, P. Y. Chavant, S. Py and Y. Vallée, Chem. Comтип., 2001, 1806.
16 T. Ishikawa, M. Kawakami, M. Fukui, A. Yamashita, J. Urano and S. Saito, J. Am. Chem. Soc., 2001, 123, 7734.

17 For a retraction of the novelty claims of reference 16 see T. Ishikawa, M. Kawakami, M. Fukui, A. Yamashita, J. Urano and S. Saito, J. Am. Chem. Soc., 2001, 123, 9724.

18 S. G. Davies, S. Jones, M. A. Sanz, F. C. Teixeira and J. F. Fox, Chem. Commun., 1998, 2235; S. D. Bull, S. G. Davies, S. Jones, J. V. A. Ouzman, A. J. Price and D. J. Watkin, Chem. Commun., 1999, 2079.
19 For example H. Feuer and B. F. Vincent, J. Am. Chem. Soc., 1962, 84, 3771; R. W. Murray and M. Singh, Synth. Commun., 1989, 3509.
20 As a preparative note, it is essential to ensure that vigorous stirring is maintained during the deprotonation and subsequent alkylation steps, as the potassium salt of the oxime was formed as a gelatinous precipitate under the reaction conditions.

21 C. Bernhart and C.-G. Wermuth, Tetrahedron Lett., 1974, 15, 2493.
22 M. Kawase and Y. Kikugawa, J. Chem. Soc., Perkin Trans. 1, 1979, 643.

23 By comparison with a commercially available sample from the Aldrich Chemical Company.
24 For instance see P. Beak and B. J. Kokko, J. Org. Chem., 1982, 47, 2823; B. J. Kokko and P. Beak, Tetrahedron Lett., 1983, 24, 561; P. Beak, A. Bashs, B. Kokko and D. Loo, J. Am. Chem. Soc., 1986, 108, 6016; P. Beak and G. W. Selling, J. Org. Chem., 1989, 54, 5574.
25 As an experimental observation, deprotonation with n - BuLi in THF at $-78^{\circ} \mathrm{C}$ for one hour generated a characteristic pink-red solution, presumably of the appropriate lithium hydroxylamide. Upon warming to rt for thirty minutes, a colour change to orange-yellow was noted, which upon addition of water gave the rearranged product.
$26{ }^{1} \mathrm{H}$ NMR homonuclear decoupling indicated a coupling constant J of 15.4 Hz for the alkene protons, consistent with the assigned (E)configuration.
27 For example see K. Burgess and M. J. Ohlmeyer, J. Org. Chem., 1991, 56, 1027; G. R. Cook and J. R. Stille, J. Org. Chem., 1991, 56, 5578.

28 R. West, P. Boudjouk and A. Matuszko, J. Am. Chem. Soc., 1969, 91, 5184; R. West and P. Boudjouk, J. Am. Chem. Soc., 1973, 95, 3987.

29 For the synthesis of the related syn-oxime see M. Tiecco, L. Testaferri, M. Tingoli, L. Bagnoli and C. Santi, Tetrahedron, 1995, 51, 1277.
30 I. C. Choong and J. A. Ellman, J. Org. Chem., 1999, 64, 6528.
31 O. A. Tarasova, E. Y. Shmidt, L. M. Sinegovskaya, O. V. Petrova, L. N. Sobenina, A. I. Mikhaleva, L. Brandsma and B. A. Trofimov, Russ. J. Org. Chem., 1999, 35, 1581
32 A. Eckersley and N. A. J. Rogers, Tetrahedron Lett., 1974, 14, 1661.
33 A. Dondoni, F. L. Merchán, P. Merino and T. Tejero, Synth. Соттип., 1994, 24, 2551.
34 D. F. Harvey and D. M. Sigano, J. Org. Chem., 1996, 61, 2268.
35 I. Coldham, M. L. Middleton and P. L. Taylor, J. Chem. Soc., Perkin Trans. 1, 1998, 2817.
36 R. G. Shea, J. N. Fitzner, J. E. Fankhauser, A. Spaltenstein, P. A. Carpino, R. M. Peevey, D. V. Pratt, B. J. Tenge and P. B. Hopkins, J. Org. Chem., 1986, 51, 5243.

37 D. A. Alonso, A. Costa, B. Mancheño and C. Nájera, Tetrahedron, 1997, 53, 4791.
38 E. C. Taylor and B. Lu, J. Org. Chem., 2001, 66, 3726.
39 D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael and M. R. Gagné, J. Am. Chem. Soc., 2000, 122, 7905.

40 M. Yus, F. Foubelo and L. R. Falvello, Tetrahedron: Asymmetry, 1995, 6, 2081.

[^0]: \dagger The IUPAC name for crotyl is but-2-enyl.

